Montana GreenPower
home | Bitprofit | search | contacts |
Home
Solar
Wind
Other Renewables
Green Power
Products & Services
Montana
Calendar

Frequently Asked Questions

Passive Solar Home Design

Q: What are the main elements of passive solar home design?
A: The following five elements constitute a complete passive solar home design. Each performs a separate function, but all five must work together for the design to be successful.

Aperture (Collector)
The large glass (window) area through which sunlight enters the building. Typically, the aperture(s) should face within 30 degrees of true south and should not be shaded by other buildings or trees from 9 a.m. to 3 p.m. each day during the heating season.

Absorber
The hard, darkened surface of the storage element. This surface—which could be that of a masonry wall, floor, or partition (phase change material), or that of a water container—sits in the direct path of sunlight. Sunlight hits the surface and is absorbed as heat.

Thermal mass
The materials that retain or store the heat produced by sunlight. The difference between the absorber and thermal mass, although they often form the same wall or floor, is that the absorber is an exposed surface whereas thermal mass is the material below or behind that surface.

Distribution
The method by which solar heat circulates from the collection and storage points to different areas of the house. A strictly passive design will use the three natural heat transfer modes—conduction, convection, and radiation—exclusively. In some applications, however, fans, ducts, and blowers may help with the distribution of heat through the house.

Control
Roof overhangs
can be used to shade the aperture area during summer months. Other elements that control under- and/or overheating include electronic sensing devices, such as a differential thermostat that signals a fan to turn on; operable vents and dampers that allow or restrict heat flow; low-emissivity blinds ; and awnings. (Source: EERE)

Q: What is direct gain design?

 

This photo shows a mountain home in Colorado that uses passive solar heating, i.e., direct gain.
Photo credit: Dave Parsons

 

A: Direct gain is the simplest passive solar home design technique. Sunlight enters the house through the aperture (collector)—usually south-facing windows with a glazing material made of transparent or translucent glass. The sunlight then strikes masonry floors and/or walls, which absorb and store the solar heat. The surfaces of these masonry floors and walls are typically a dark color because dark colors usually absorb more heat than light colors. At night, as the room cools, the heat stored in the thermal mass convects and radiates into the room.

Some builders and homeowners have used water-filled containers located inside the living space to absorb and store solar heat. Water stores twice as much heat as masonry materials per cubic foot of volume. Unlike masonry, water doesn't support itself. Water thermal storage, therefore, requires carefully designed structural support. Also, water tanks require some minimal maintenance, including periodic (yearly) water treatment to prevent microbial growth.

The amount of passive solar (sometimes called the passive solar fraction) depends on the area of glazing and the amount of thermal mass. The glazing area determines how much solar heat can be collected. And the amount of thermal mass determines how much of that heat can be stored. It is possible to undersize the thermal mass, which results in the house overheating. There is a diminishing return on oversizing thermal mass, but excess mass will not hurt the performance. The ideal ratio of thermal mass to glazing varies by climate.

Another important thing to remember is that the thermal mass must be insulated from the outside temperature. If the thermal mass is not insulated, the collected solar heat can drain away rapidly. Loss of heat is especially likely when the thermal mass is directly connected to the ground or is in contact with outside air at a lower temperature than the desired temperature of the mass.

Even if you simply have a conventional home with south-facing windows without thermal mass, you probably still have some passive solar heating potential (this is often called solar-tempering). To use it to your best advantage, keep windows clean and install window treatments that enhance passive solar heating, reduce nighttime heat loss, and prevent summer overheating. (Source: EERE)

Q: What is indirect gain (Trombe wall) design?
A: An indirect-gain passive solar home has its thermal storage between the south-facing windows and the living spaces.

Using a Trombe wall is the most common indirect-gain approach. The wall consists of an 8–16 inch-thick masonry wall on the south side of a house. A single or double layer of glass is mounted about 1 inch or less in front of the wall's surface. Solar heat is absorbed by the wall's dark-colored outside surface and stored in the wall's mass, where it radiates into the living space.

The Trombe wall distributes or releases heat into the home over a period of several hours. Solar heat migrates through the wall, reaching its rear surface in the late afternoon or early evening. When the indoor temperature falls below that of the wall's surface, heat begins to radiate and transfer into the room. For example, heat travels through a masonry wall at an average rate of 1 hour per inch. Therefore, the heat absorbed on the outside of an 8-inch-thick concrete wall at noon will enter the interior living space around 8 p.m. (Source: EERE)

 

 
home | search | help | disclaimer | privacy policy | contacts |
 

Montana Green Power

 

National Center for Appropriate Technology
(406) 494-4572
Toll free 1-800-275-6228 (ASK-NCAT)
Fax (406) 494-2905

Paid for by customers of NorthWestern Energy
Web architecture and marketing by Internet Navigating